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.4bstract. In the minimal-coupling Lagrangian for the interaction of the electromagnetic 
field and non-relativistic charged particles, the charge and current densities are coupled 
to scalar and vector potentials. In the multipolar Lagrangian, on the other hand, the 
aggregate or particles is partially (though sometimes completely) qescribed by polarisation 
and magnetisation fields and these are coupled to the electric and magnetic induction 
fields. It is shown that if isotropically averaged polarisation and magnetisation fields are 
introduced, the minimal-coupling and multipolar Lagrangians are identical, provided also 
the potentials used are those of the Coulomb gauge. The associated canonical transforma- 
tion of the Hamiltonian is the identity transformation. Thus the minimal-coupling Hamil- 
tonian can be written directly in multipolar form, without any change in the canonical 
dynamical variables. 

1. Introduction 

In this paper we consider a class of polarisation and magnetisation fields that are 
obtained from line-integral polarisation and magnetisation fields by isotropic averag- 
ing. The line-integral polarisation and magnetisation fields and their relation to 
line-integral scalar and vector potentials for the electromagnetic field have been 
examined in earlier papers (Healy 1977, 1979). The Lagrangian for the complete 
system of field and charges, when expressed in terms of path-dependent quantities 
coupled to path-independent quantities, is such that the minimal-coupling and multi- 
polar interactions are the same. A similar property holds for the minimal-coupling 
Lagrangian in which the potentials are those of the Coulomb gauge and the multipolar 
Lagrangian in which the polarisation and magnetisation fields are the isotropically 
averaged fields introduced here-the two Lagrangians are exactly equal. This follows 
from the fact (Belinfante 1962) that the potentials in the Coulomb gauge are the 
isotropic averages of the potentials in certain of the line-integral gauges and can be 
expressed as volume integrals over the electric and magnetic induction fields. It is 
also shown that the unitary transformation of Power and Zienau (1959), which relates 
the minimal-coupling and multipolar forms of the Hamiltonian for the system, reduces 
to the identity transformation when the isotropically averaged polarisation field is 
used in the generating function. Thus the minimal-coupling and multipolar interaction 
Hamiltonians are the same and the canonical dynamical variables are unaltered. The 
terms linear and quadratic in the vector potential that appear in the minimal-coupling 
form of the interaction Hamiltonian correspond, exactly and respectively, to the 
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magnetisation and diamagnetisation terms that appear in the multipolar form. There 
is no coupling between the isotropically averaged polarisation field and the transverse 
electric field, as the former is purely longitudinal. 

2. Polarisation and magnetisation fields 

The system to be considered consists of a finite number of slowly moving charged 
point particles in interaction with the electromagnetic field. If particle a has charge 
e ,  and position vector qLl, then the charge and current densities at the field point r 
and the time t are given by 

where the dot denotes differentiation with respect to t and 8 is the three-dimensional 
Dirac delta function. The charge and current densities p and j satisfy the continuity 
or charge conservation equation 

v . i + p  = o .  (3) 
We introduce a reference point R which need not coincide with a material particle 
but may move with the aggregate as a whole. (R could be, for instance, the centre 
of mass.) The ‘true’ charge and current densities associated with this reference point 
are defined by 

where Q is the total charge of the aggregate. The charge and current densities p and 
i are sources for the microscopic electric field e and magnetic induction field 6,  

V * e = 4 7 r p .  ( 6 )  
V x b = (47r/c)j + ( l / c ) P ,  (7 1 

whereas the true charge and current densities ptrue and hue are sources for the 
microscopic electric displacement vector d and magnetic field h,  

(8) 

(9) 

V * d = 4r~true, 

V x h = (47r/c ) jtrue + (1 / c  )d. 

d = e  +47rp, (10) 

h = b -47rm, (11) 
where p and m are microscopic polarisation and magnetisation fields and must satisfy 

G= P - P t r u e  = -V * e, (12) 

j = j - itrue = p  +cV x m .  (13) 

The fields are interrelated through the equations 

- 
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Here p' is the polarisation charge density and f the sum of the polarisation current 
density and the magnetisation current density. If the system is electrically neutral 
(Q =_O) or if the reference point R is at infinity, then ptrue and itrue vanish and p' = p  
and j = j .  We note that ptrue and itrue, and hence p' and f, satisfy the continuity equation 
just like p and j .  

2.1. Line-integral solutions 

Particular polarisation and magnetisation fields having the form of line integrals have 
been given previously (Healy 1977). For each instant of time and for each particle 
a we choose a smoothly varying curve C, starting at R and ending at q,. Then 

define solutions of equations (12) and (13). A physical interpretation of these fields 
can be given in terms of the virtual displacement of all the charges from their actual 
positions to the reference point and the formation of compensating electric and 
magnetic dipoles distributed along the integration paths (Healy 1982). 

A special class of integration paths will be of interest to us here. Let C, consist 
of a pair of parallel straight lines, one starting at R and extending to infinity in the 
direction specified by a unit vector E* and the other coming from infinity in the direction 
of -2 and ending at the charge position 4,. The vector E* is to be time independent 
and the same for all a. The polarisation and magnetisation fields associated with these 
integration paths may then be denoted by p ( r ,  t, 6 )  and m (r,  t, 21, respectively. We 
introduce a real parameter U for the outward portion of C, (which is common to all 
the charges), so that a point on this portion is given by 

r' = R +U&,  o s u  <CO,  (16) 
and a real parameter U, for the inward portion, so that a point on this portion is given 
by 

r' = q, +U,&, CO>u, 2 0. (17) 
Using these parameters, we obtain for the straight-line polarisation and magnetisation 
fields 

g ( r , t , & i = Q I n  &S(r - r ' )du  (18) 
m 

and 
00 

m (r ,  t ,  6 )  = I E* x k S ( r  - r ' )  du -c E* x q a S ( r  - r ' )  du,. (19) 
C O  

2.2. Isotropic averaging 

The polarisation and magnetisation fields of equations (18) and (19) still depend on 
the direction of the vector d. This dependence may be eliminated by performing an 
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unweighted averaging over all directions. The isotropically averaged fields will also 
be valid polarisation and magnetisation fields, since the right-hand sides of the 
inhomogeneous defining equations (12) and (13) are linear in p and m .  Now on the 
outward portion of C, 

u = lr’-Ri and 6 = ( r ’ - - R ) / / r ’ - R / ,  (20) 

U, = lr’-q,l and i.: = (r’-q,)/Ir‘--q,l .  (21) 

while on the inward portion 

Also, if dR is an element of solid angle about the direction of 6, the differential 
volume element may be expressed as 

(22) d3r’ = U’ du dR 

with R as origin of a spherical polar coordinate system or as 

d3r’ = U: du, dR (23) 

with q, as origin. It follows from this and equations (18) and (19) that the isotropically 
averaged fields are given by 

and 

Here the properties of the Dirac delta function have been used to reduce the volume 
integrals over all space. If these integrals are left intact, we may express the isotropi- 
cally averaged fields as 

and 

where the second forms _are obtained from the first by using integration by parts and 
the fact that both p’ and j vanish for r sufficiently large. The integral expressions (26) 
and (27) apply to a continuous as well as to a discrete distribution, provided the bound 
charge and current densities satisfy the continuity equation and vanish sufficiently 
rapidly at infinity (see appendix 1). It should be noted that the isotropically averaged 
polarisation and magnetisation fields are, apart from constant factors, the electric and 
magnetic induction fields that would arise, according to the Coulomb and Biot-Savart 
laws, from a static charge density p’ and a stationary current density f We emphasise, 
however, that despite their ‘instantaneous’ character, these fields are exact solutions 
of the simultaneous time-dependent equations (12) and (13). 
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3. Lagrangian 

The minimal-coupling Lagrangian for the electromagnetic field interacting with non- 
relativistic charged point particles is represented as a sum of gauge-independent and 
gauge-dependent parts by 

L =Lo+L1 

where 

and 

The microscopic electric and magnetic induction fields e and b are derived from the 
potentials 4 and a through the equations 

e = - V 4  - ( l / c ) u ,  (31) 

b = V x a ,  (32) 

and mu is the mass of particle a. Changing the potentials in L I  through a gauge 
transformation for which the gauge function involves the Lagrangian coordinates alone 
yields an equivalent Lagrangian that differs from L only by the addition of a total 
time derivative of a function or functional of the coordinates. We here take the 
potentials to be those of the Coulomb gauge, with the variations of a in Hamilton’s 
principle being restricted by the transversality condition and with 4 being regarded, 
not as a dynamical variable of the field, but as a prescribed function of the particle 
coordinates. Thus (Belinfante 1962) 

(r’ - r )  e (r‘ ,  t )  1 V’ * e ( r ’ ,  t )  
d3r’ = - I\ J d3r’ (33) 

1 
Ir’-rl3 4 r  lr ’ -r(  4v7 t)=G Jj I  

and 

( r ’ - r ) x b ( r ’ ,  t )  1 V‘ x b (r’ ,  t )  
d3rr = - 111 d3r’. (34) 

a(r ,  f)=L1l[ 477 1 , , 1 - ~ 1 3  4 r  Irl-rl 

The first forms are obtained by an isotropic averaging of the potentials in those 
line-integral gauges for which the integration paths consist of fixed parallel straight 
lines coming from infinity and ending at the field points, and the second forms follow 
from them through integration by parts. Since V - e = 4rp, the scalar potential may 
be written as 

which shows that 4 is the instantaneous electrostatic or Coulomb potential of the 
point charges. It may also be shown, by differentiating with respect to r under the 
integral sign, that V * a = 0, so that the Coulomb gauge condition is satisfied. 
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Splitting the charge and current densities into true and bound contributions as in 
equations (12) and (13), we express the interaction Lagrangian (30) as 

L I = (Q/c )k * a (R, t )  - Qr#J (R, t )  + [( l / c ) j  * a -&5] d3r. (36) 

The first two terms correspond to the interaction Lagrangian for a collective particle 
of charge Q moving with the reference point in the field described by the Coulomb 
potentials r#J and a. They vanish if the system is neutral (Q = 0) or if R is at infinity 
(where #J and a are zero), In the remaining terms of equation (36) we insert the 
formulae (33) and (34) for the potentials, invert the order of integration and inter- 
change the roles of the dummy variables r and r ’ .  We then obtain 

L = iO/c)k a (R, t )  - Qr#J (R, t )  + 15 ( p  e + m * b ) d3r (37) 

where p and m are defined by (24) and ( 2 5 ) .  This is just the multipolar interaction 
Lagrangian associated with these polarisation and magnetisation fields. Thus when 
the isotropically averaged polarisation and magnetisation fields are used, the multipolar 
and minimal-coupling Lagrangians are identical, provided the potentials are those of 
the Coulomb gauge. 

4. Hamiltonian 

The quantum mechanical interaction energy operator that results from the minimal- 
coupling substitution pU+pU - ( e , / c ) a ( q , )  in the Hamiltonian for the uncoupled 
systems is given by 

Here p a  is the canonical momentum conjugate to qU and a ( r )  is the vector potential 
in the Coulomb gauge. (As the notation indicates, we are using the Schrodinger 
picture of the motion.) Because a is transverse, the order of the operators p a  and 
a(q , )  in Hint is immaterial. The minimal-coupling Hamiltonian may be changed to 
multipolar form by means of the unitary operator exp(i W / h )  in which the generating 
function is defined by 

W = ( l / c )  l l l p  a d3r (39) 

where p is a polarisation field for the aggregate of particles. Previously the multipolar 
Hamiltonian has been derived by using the line-integral polarisation field (14) in W 
(see e.g. Healy 1982). We can also, however, use the isotropically averaged polarisa- 
tion field (24). Now this field is purely longitudinal-it is the longitudinal part of any 
polarisation field associated with the reference point R, as all these fields differ only 
in their transverse parts (Woolley 1975, Healy 1977). Since also the vector potential 
in the Coulomb gauge is purely transverse, the generating function W vanishes and 
the unitary operator defining the canonical transformation is just the identity: 
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Nevertheless, there is a multipolar form of the Hamiltonian corresponding to this 
polarisation field, as we shall now verify. For simplicity, we take the reference point 
R to be fixed. 

Substituting from the first of the formulae (34) for the vector potential as a volume 
integral over the magnetic induction field gives immediately 

with 

The magnetisation field rii in the Hamiltonian is obtained from the magnetisation 
field m in the Lagrangian through the usual prescription-the physical momenta of 
the particles are replaced by the corresponding transformed canonical momenta. It 
should be noted that in the present case (i) the reference point is fixed, (ii) since the 
transformation is the identity, the new canonical momenta are the same as the old 
and (iii) the magnetisation fields do not have to be symmetrised to make them 
Hermitian, as angular momentum operators commute with isotropic functions of the 
coordinates. The same substitution for the vector potential also gives 

where o is a diamagnetisation tensor field defined by 

It is shown in appendix 2 that this field too may be obtained by isotropic averaging. 
Moreover, it follows readily from the relation 

(45) ma 4, = pm - ( e J c  )a (qu 

that the istropically averaged fields, just like the line-integral fields, satisfy 

m, ( r )  = 61, (r  1 - o,, ( r ,  s )b, (s ) d3s. II J 
Combination of (41) and (43) enables the minimal-coupling interaction Hamiltonian 
(38) to be written in typical multipolar form: 

The electric interaction term -JJJp * d’ d3r (where d is the microscopic displacement 
vector e + 4 ~ p )  and the self-energy term 2n JJsp L2 d3r, which occur when the line- 
integral polarisation field is used, both vanish here because the isotropically averaged 
polarisation field is purely longitudinal. We emphasise that equations (38) and (47) 
are merely two different ways of expressing the same operator Hint and that there is 
no change in either the unperturbed Hamiltonian or the canonical dynamical variables. 
This is in contrast to the line-integral multipolar formalism, in which the partitioning 
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of the total Hamiltonian operator into unperturbed and interaction parts is altered 
and in which the field momentum conjugate to a is proportional to d’ rather than 
to e’. 

5. Summary 

The polarisation and magnetisation fields discussed in 9: 2 are the unweighted averages 
of the path-dependent polarisation and magnetisation fields taken over all straight-line 
integration paths ending at the positions of the charged particles. It is shown in 
appendix 1 that the integral expressions for these fields apply to a continuous as well 
as to a discrete distribution of charge and current densities. The equality of the 
minimal-coupling and multipolar interactions was demonstrated in P 3 for the classical 
Lagrangian and in $ 4  for the quantum mechanical Hamiltonian. In each case the 
polarisation and magnetisation fields are the isotropically averaged ones and the 
potentials are those of the Coulomb gauge. The diamagnetisation tensor field that 
appears in the multipolar Hamiltonian is derived by isotropic averaging in appendix 2. 

Appendix 1. Integral form of polarisation and magnetisation fields 

To verify that the integral expressions (26) and (27) for the polarisation and magnetisa- 
tion fields satisfy the defining equations (12) and (13), we first note that 

-v * p = -(4n)-’ J J  J c ( r ’ ,  t)V21r -r’I-’ d 3 r ’ = c ( r ,  t ) ,  ( A l . l )  

as required. Here we have used the representation 

S ( r )  = -(1/4n)V2(1/r) (A1.2) 

of the delta function. From this representation and from the vector identity 

V x ( A  x B ) =  (B  * V ) A  - (V A ) B ,  (A1.3) 

which applies if B is independent of r, it follows that 

- 
Since p’ and j are assumed to satisfy the continuity equation, we also have 

= -(4n)-1 / j/ { j i r ’ ,  t )  - v’}v’ l r ’ - r / - l  d3r‘ (A1.5) 

where the last line follows by integrating by parts and dropping a surface term at 
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infinity. Addition of equations (A1.4) and (A1.5) then gives 

e + c V x m  = j ( r , t )  

and completes the verification. 

4407 

(A1.6) 

Appendix 2. Isotropically averaged diamagnetisation field 

The diamagnetisation tensor field of equation (44) may be derived by isotropic 
averaging as follows. The path-dependent diamagnetisation field (Healy 1982) is a 
sum of products of line integrals, namely 

where the curves C, are the same as those occurring in the path-dependent polarisation 
and magnetisation fields. For each particle a we now choose a pair of straight-line 
paths Ca(k) and Ca(+) that come from infinity, end at q, and are parallel to unit 
vectors -2 and -4 respectively. With these paths we associate a tensor field defined 
by 

cc cc -Io ;j8(r - r ' )  du, Io ' I j iS (s  -s') do,) (A2.2) 

where U, is a parameter for Ca(6)  and v, is a parameter for Ca($j). (The line-integral 
diamagnetisation field, for the case in which the integration paths are parallel straight 
lines coming from infinity, is obtained by setting 6 = 6.)  If this expression is averaged 
over all directions of 6 and < independently, then the diamagnetisation field (44) is 
recovered. Thus 

= oij(r,  s). (A2.3) 
Here dfl is an element of solid angle about E* and dO is an element of solid angle 
about 6,  so that, with q, as origin, the differential volume elements in r space and s 
space may be expressed as 

d3r'=u: duadfl=Ir '-q,12du,dR (A2.4) 
and 
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respectively. The properties of the Dirac delta function have again been used to 
reduce the volume integrals. The occurrence in equation (A2.3) of independent 
averages over the directions of 2 and 6 was to be expected, as the diamagnetisation 
field arises from quadratic terms in a Hamiltonian derived from an averaged 
Lagrangian, and is thus composed of products of averages rather than averages of 
products. 
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